Метод радиометрии - Страница 11

Контроль качества сварки - Метод радиометрии

Подробности
 

В отличие от радиографического и радиоскопического методов при радиометрии объект просвечивается узким пучком излучения. Если в просвечиваемом изделии будет дефект, то регистрационное устройство отметит изменение интенсивности излучения.

Преимущества радиометрии: высокая чувствительность (выше, чем у радиографического метода), высокая производительность, возможность бесконтактного контроля качества движущегося изделия, что особенно удобно при поточном производстве (возможно осуществление обратной связи с технологическим процессом). Основной недостаток радиометрии: интегрирующие свойства - одновременная регистрация сигнала от дефекта и от изменения толщины изделия. Это затрудняет возможность определения формы, размеров и глубины залегания дефекта - иногда оказывается необходимым снимать или зачищать усиление сварного шва.

Дальнейшим развитием радиографии является радиационная вычислительная томография. В отличие от обычной радиографии объект просвечивается большим количеством источников излучения, прошедшее излучение фиксируется большим количеством детекторов, изделие перемещается по определенной программе, результаты контроля запоминаются и анализируются с помощью ЭВМ, а затем на основе созданной модели внутренней структуры объекта формируется ее изображение на экране, т.е. обеспечивается наглядность, отсутствующая при обычной радиографии.

С помощью радиационных методов контроля выявляются трещины, непровары, непропаи, включения, поры, подрезы и другие дефекты. Результаты контроля наглядны (кроме обычной радиометрии), поэтому по сравнению с другими методами неразрушающего контроля при радиационном контроле легче определить вид дефекта. Как правило, не требуется высокая чистота поверхности сварных швов и изделий, можно контролировать сравнительно большие толщины.

К недостаткам радиационных методов необходимо прежде всего отнести вредность для человека, в связи с чем требуются специальные меры радиационной безопасности: экранирование, увеличение расстояния от источника излучения и ограничение времени пребывания оператора в опасной зоне. Кроме того, радиационными методами плохо выявляются несплошности малого раскрытия (трещины, непровары), расположенные под углом более 7... 12° к направлению просвечивания, метод малоэффективен для угловых швов.

19.5.2. Акустические методы контроля Различают пассивные и активные акустические методы контроля сварных соединений. Пассивные методы основаны на исследовании упругих волн, возникающих в контролируемом изделии во время или по окончании технологического процесса, или при нагружении, в частности в момент образования или развития несплошностей. К ним относятся методы контроля, использующие акустическую эмиссию, а также шумо-и вибродиагностика. Активные методы основаны на исследовании распространения колебаний специально вводимых в контролируемое изделие.

Акустические колебания - это механические колебания среды. При акустическом контроле обычно используют колебания с частотой 0,5...25 МГц, т. е. ультразвуковые. Поэтому большинство акустических методов являются ультразвуковыми, хотя известны случаи использования и колебаний звуковой частоты, в частности импедансный метод контроля, используемый при контроле паяных, клееных или сваренных контактной сваркой конструкций.

Для возбуждения и регистрации ультразвуковых колебаний используют пьезоэлектрический эффект: некоторые материалы (кварц, титанат бария, титанат-цирконат свинца и др.) под действием переменного электрического поля меняют свои размеры с частотой изменения поля. Пьезоэлектрическую пластину помещают в специальном устройстве - пьезопреобразователе (искателе). Материалы, используемые в пьезопреобразователях: плексиглас, капролон, фторопласт, полистирол, - способствуют гашению отраженной волны, так как имеют большие коэффициенты затухания ультразвуковых колебаний и малую скорость их распространения.

Пьезопреобразователи, предназначенные для ввода волны в направлении, перпендикулярном поверхности, называют прямыми, или нормальными, а для ввода под некоторым углом -наклонными, или призматическими. Пьезопреобразователи включаются по раздельной, совмещенной или раздельно-совмещенной схемам. В последнем случае в одном корпусе размещаются два пьезопреобразователя, разделенных между собой экраном. При падении ультразвуковой волны на поверхность раздела двух сред, в частности на границу дефекта, часть энергии отражается, что и используется при контроле. Для анализа распространения ультразвуковых колебаний в контролируемом изделии используют три основных метода: теневой, зеркально-теневой и эхо-метод.

При тенево м метод е признаком обнаружения дефекта служит уменьшение интенсивности (амплитуды) ультразвуковой волны, прошедшей от излучающего пьезопреобразователя к приемному (рис. 180, а). Недостатки метода - необходимость двустороннего доступа к изделию и малая точность оценки координат дефектов, достоинство - высокая помехоустойчивость. Метод может применяться для изделий с грубо обработанной поверхностью.

При зеркально-теневом методе признаком обнаружения дефекта является уменьшение интенсивности (амплитуды) ультразвуковой волны, отраженной от противоположной поверхности изделия (рис. 180, б). Отраженный сигнал называется донным. Метод не требует двустороннего доступа к контролируемому изделию, позволяет более достоверно выявлять корневые дефекты в стыковых швах, помехоустойчив, применяется для изделий небольшой толщины с грубо обработанной поверхностью. Однако точность определения координат дефекта и при этом методе невысока.

Добавить комментарий


Защитный код
Обновить

   
© ALLROUNDER