Вторичная кристаллизация - Страница 6

Классификация способов сварки - Вторичная кристаллизация

Подробности

Вторичная кристаллизация и строение сварного соединения С затвердеванием металла шва структурные превращения в нем не заканчиваются. Например, при сварке стали первичные кристаллиты сразу после их образования состоят из аустенита - твердого раствора углерода и легирующих элементов в железе, существующего при высоких температурах (750... 1500 °С ). В процессе охлаждения аустенит распадается, превращаясь в зависимости от состава стали и скорости охлаждения в другие фазы: пластичный феррит, более прочный перлит и прочный, но малопластичный мартенсит. Скорость охлаждения зоны сварки обычно велика, и структурные превращения не успевают произойти до конца. Следовательно, меняя скорость охлаждения сварного соединения, подогревая или искусственно охлаждая его, можно в некоторых пределах управлять вторичной кристаллизацией металла шва и его механическими свойствами. Теплота, выделяемая источником нагрева, при сварке распространяется в основной металл. Его участки нагреваются до температуры плавления на границе сварочной ванны и имеют температуру окружающей среды вдали от нее. Это не может не сказаться на структуре металла. Зону основного металла, в которой в результате нагрева и охлаждения металла происходят изменения структуры и свойств, называют зоной термического влияния (ЗТВ). Каждая точка в ЗТВ в зависимости от расстояния до оси шва достигает различной максимальной температуры, нагревается и охлаждается с различными скоростями. Изменение температуры данной точки во времени называют термическим циклом. Каждая точка ЗТВ имеет при сварке свой термический цикл. Значит, металл в ЗТВ подвергается в результате сварки нескольким видам термической обработки. Поэтому в ЗТВ наблюдаются четко выраженные участки с различной структурой и свойствами. У каждого свариваемого материала в ЗТВ будут свои, характерные для этого материала, структурные участки. Наиболее наглядна эта структурная неоднородность ЗТВ при сварке плавлением низкоуглеродистой стали (рис. 16). Непосредственно к металлу шва примыкает участок неполного расплавления 1. Это тонкая (в несколько микрон) переходная полоска от металла шва к основному металлу, состоящая из частично оплавленных зерен основного металла. Металл участка неполного расплавления химически неоднороден, в нем концентрируются напряжения. Этот участок сильно влияет на свойства соединения в целом. За ним следует участок перегрева 2. В нем металл нагревается до температуры выше 1130 °С, зерно успевает сильно вырасти и при охлаждении не измельчается. Здесь возможно выделение пластичной фазы - феррита - не по границам зерен, а внутри их в виде иголок или пластинок. Такая структура называется видманштедтовой. Она обладает плохими механическими свойствами, в частности низкой ударной вязкостью. Участок неполного расплавления и участок перегрева вместе называют около шовной зоной. При температуре 900... 1100 °С образуется участок нормализации (полной перекристаллизации) с мелкозернистой структурой. В этом участке длительность пребывания металла при высокой температуре невелика, зерно не успевает вырасти, а при охлаждении - измельчается. Поэтому металл здесь имеет самые высокие механические свойства. Участок 4 неполной перекристаллизации определяется диапазоном температуры 723...900 °С. Конечная структура на этом участке состоит из крупных зерен, не успевших пройти перекристаллизацию, и расположенных между ними мелких зерен, образовавшихся при перекристаллизации. По механическим свойствам металл здесь хуже, чем на участке нормализации 5, но лучше, чем на участке перегрева. На участке рекристаллизации 5 металл нагревается до температуры 500...723 °С. Структура его не изменяется, но если сваривался металл, подвергавшийся холодной прокатке, или легированный металл после термообработки (например, закалки), то на этом участке восстановится исходная структура металла. При этом несколько уменьшится прочность, но возрастет пластичность металла. На участке б, нагревающемся до температуры ниже 500 °С, видимых изменений структуры не происходит. Однако металл здесь охлаждается очень медленно, подогреваясь от соседних участков, и поэтому вплоть до температуры 100 °С по границам зерен могут выделяться микроскопические частицы примесей. Это явление называют старением металла. В результате старения снижается вязкость, чему также способствуют образующиеся в процессе сварки пластические деформации металла вследствие его теплового расширения. Охрупчивание металла, нагревавшегося до температуры, при которой образуются синие цвета побежалости (200...400 °С ), называют синеломкостью, а участок б - участком синеломкости. Ширина зоны термического влияния зависит от количества тепловой энергии, приходящейся на единицу длины шва, - погонной энергии. При ручной дуговой сварке, например, стали ширина ЗТВ составляет 5...6 мм, при газопламенной сварке она доходит до 25 мм.

Комментарии   

 
+5 #1 Алексей 05.06.2013 00:54
Отсутствие рисунков - плохо :cry:
Цитировать
 
 
+3 #2 Валентин 25.04.2014 05:45
Без рисунков нет полной правильной инфорьации.
Цитировать
 

Добавить комментарий


Защитный код
Обновить

   
© ALLROUNDER